Comparison between different duals in multiobjective fractional programming
نویسندگان
چکیده
The present paper is a continuation of [2] where we deal with the duality for a multiobjective fractional optimization problem. The basic idea in [2] consists in attaching an intermediate multiobjective convex optimization problem to the primal fractional problem, using an approach due to Dinkelbach ([6]), for which we construct then a dual problem expressed in terms of the conjugates of the functions involved. The weak, strong and converse duality statements for the intermediate problems allow us to give dual characterizations for the efficient solutions of the initial fractional problem. The aim of this paper is to compare the intermediate dual problem with other similar dual problems known from the literature. We completely establish the inclusion relations between the image sets of the duals as well as between the sets of maximal elements of the image sets.
منابع مشابه
Optimality and Duality for an Efficient Solution of Multiobjective Nonlinear Fractional Programming Problem Involving Semilocally Convex Functions
In this paper, the problem under consideration is multiobjective non-linear fractional programming problem involving semilocally convex and related functions. We have discussed the interrelation between the solution sets involving properly efficient solutions of multiobjective fractional programming and corresponding scalar fractional programming problem. Necessary and sufficient optimality...
متن کاملDuality and optimality in multiobjective optimization
Report The aim of this work is to make some investigations concerning duality for mul-tiobjective optimization problems. In order to do this we study first the duality for scalar optimization problems by using the conjugacy approach. This allows us to attach three different dual problems to a primal one. We examine the relations between the optimal objective values of the duals and verify, unde...
متن کاملDuality for multiobjective fractional programming problem using convexifactors
In this paper, the concept of ∂-quasiconvexity is introduced by using convexifactors. Mond-Weir-type and Schaible-type duals are associated with a multiobjective fractional programming problem, and various duality results are established under the assumptions of ∂-pseudoconvexity and ∂-quasiconvexity.
متن کاملLinear plus fractional multiobjective programming problem with homogeneous constraints using fuzzy approach
We develop an algorithm for the solution of multiobjective linear plus fractional programming problem (MOL+FPP) when some of the constraints are homogeneous in nature. Using homogeneous constraints, first we construct a transformation matrix T which transforms the given problem into another MOL+FPP with fewer constraints. Then, a relationship between these two problems, ensuring that the solu...
متن کاملThe Position of Multiobjective Programming Methods in Fuzzy Data Envelopment Analysis
Traditional Data Envelopment Analysis (DEA) models evaluate the efficiency of decision making units (DMUs) with common crisp input and output data. However, the data in real applications are often imprecise or ambiguous. This paper transforms fuzzy fractional DEA model constructed using fuzzy arithmetic, into the conventional crisp model. This transformation is performed considering the goal pr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2007